Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
New Phytol ; 217(2): 657-670, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165807

RESUMO

Uranium (U) is a naturally occurring radionuclide that is toxic to plants. It is known to interfere with phosphate nutrition and to modify the expression of iron (Fe)-responsive genes. The transporters involved in the uptake of U from the environment are unknown. Here, we addressed whether IRT1, a high-affinity Fe2+ transporter, could contribute to U uptake in Arabidopsis thaliana. An irt1 null mutant was grown hydroponically in different conditions of Fe bioavailability and phosphate supply, and challenged with uranyl. Several physiological parameters (fitness, photosynthesis) were measured to evaluate the response to U treatment. We found that IRT1 is not a major route for U uptake in our experimental conditions. However, the analysis of irt1 indicated that uranyl interferes with Fe and phosphate homeostasis at different levels. In phosphate-sufficient conditions, the absence of the cation chelator EDTA in the medium has drastic consequences on the physiology of irt1, with important symptoms of Fe deficiency in chloroplasts. These effects are counterbalanced by U, probably because the radionuclide competes with Fe for complexation with phosphate and thus releases active Fe for metabolic and biogenic processes. Our study reveals that challenging plants with U is useful to decipher the complex interplay between Fe and phosphate.


Assuntos
Arabidopsis/metabolismo , Homeostase/efeitos dos fármacos , Ferro/metabolismo , Fosfatos/metabolismo , Urânio/toxicidade , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Proteínas de Transporte de Cátions/metabolismo , Modelos Biológicos , Fenótipo , Fotossíntese/efeitos dos fármacos , Pigmentos Biológicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Fisiológico/efeitos dos fármacos
3.
Plant Cell Physiol ; 57(4): 690-706, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26865660

RESUMO

Phosphate (Pi) is a macronutrient that is essential for plant life. Several regulatory components involved in Pi homeostasis have been identified, revealing a very high complexity at the cellular and subcellular levels. Determining the Pi content in plants is crucial to understanding this regulation, and short real-time(33)Pi uptake imaging experiments have shown Pi movement to be highly dynamic. Furthermore, gene modulation by Pi is finely controlled by localization of this ion at the tissue as well as the cellular and subcellular levels. Deciphering these regulations requires access to and quantification of the Pi pool in the various plant compartments. This review presents the different techniques available to measure, visualize and trace Pi in plants, with a discussion of the future prospects.


Assuntos
Cromatografia/métodos , Espectroscopia de Ressonância Magnética/métodos , Espectrometria de Massas/métodos , Fosfatos/análise , Fosfatos/metabolismo , Plantas/metabolismo , Técnicas Biossensoriais , Eletroforese , Marcadores Genéticos , Isótopos de Fósforo/farmacocinética , Plantas/genética
4.
Plant Cell ; 27(9): 2560-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26342016

RESUMO

Prior to the release of their cargoes into the vacuolar lumen, sorting endosomes mature into multivesicular bodies (MVBs) through the action of ENDOSOMAL COMPLEX REQUIRED FOR TRANSPORT (ESCRT) protein complexes. MVB-mediated sorting of high-affinity phosphate transporters (PHT1) to the vacuole limits their plasma membrane levels under phosphate-sufficient conditions, a process that allows plants to maintain phosphate homeostasis. Here, we describe ALIX, a cytosolic protein that associates with MVB by interacting with ESCRT-III subunit SNF7 and mediates PHT1;1 trafficking to the vacuole in Arabidopsis thaliana. We show that the partial loss-of-function mutant alix-1 displays reduced vacuolar degradation of PHT1;1. ALIX derivatives containing the alix-1 mutation showed reduced interaction with SNF7, providing a simple molecular explanation for impaired cargo trafficking in alix-1 mutants. In fact, the alix-1 mutation also hampered vacuolar sorting of the brassinosteroid receptor BRI1. We also show that alix-1 displays altered vacuole morphogenesis, implying a new role for ALIX proteins in vacuolar biogenesis, likely acting as part of ESCRT-III complexes. In line with a presumed broad target spectrum, the alix-1 mutation is pleiotropic, leading to reduced plant growth and late flowering, with stronger alix mutations being lethal, indicating that ALIX participates in diverse processes in plants essential for their life.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Citosol/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Homeostase , Mutação , Proteínas de Transporte de Fosfato/genética , Plantas Geneticamente Modificadas , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Multimerização Proteica , Transporte Proteico , Vacúolos/genética , Vacúolos/metabolismo
5.
Front Plant Sci ; 6: 564, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26257765

RESUMO

The resurrection plant Haberlea rhodopensis was used to study dynamics of drought response of photosynthetic machinery parallel with changes in primary metabolism. A relation between leaf water content and photosynthetic performance was established, enabling us to perform a non-destructive evaluation of the plant water status during stress. Spectroscopic analysis of photosynthesis indicated that, at variance with linear electron flow (LEF) involving photosystem (PS) I and II, cyclic electron flow around PSI remains active till almost full dry state at the expense of the LEF, due to the changed protein organization of photosynthetic apparatus. We suggest that, this activity could have a photoprotective role and prevent a complete drop in adenosine triphosphate (ATP), in the absence of LEF, to fuel specific energy-dependent processes necessary for the survival of the plant, during the late states of desiccation. The NMR fingerprint shows the significant metabolic changes in several pathways. Due to the declining of LEF accompanied by biosynthetic reactions during desiccation, a reduction of the ATP pool during drought was observed, which was fully and quickly recovered after plants rehydration. We found a decline of valine accompanied by lipid degradation during stress, likely to provide alternative carbon sources for sucrose accumulation at late stages of desiccation. This accumulation, as well as the increased levels of glycerophosphodiesters during drought stress could provide osmoprotection to the cells.

6.
Nature ; 524(7565): 366-9, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26168400

RESUMO

Diatoms are one of the most ecologically successful classes of photosynthetic marine eukaryotes in the contemporary oceans. Over the past 30 million years, they have helped to moderate Earth's climate by absorbing carbon dioxide from the atmosphere, sequestering it via the biological carbon pump and ultimately burying organic carbon in the lithosphere. The proportion of planetary primary production by diatoms in the modern oceans is roughly equivalent to that of terrestrial rainforests. In photosynthesis, the efficient conversion of carbon dioxide into organic matter requires a tight control of the ATP/NADPH ratio which, in other photosynthetic organisms, relies principally on a range of plastid-localized ATP generating processes. Here we show that diatoms regulate ATP/NADPH through extensive energetic exchanges between plastids and mitochondria. This interaction comprises the re-routing of reducing power generated in the plastid towards mitochondria and the import of mitochondrial ATP into the plastid, and is mandatory for optimized carbon fixation and growth. We propose that the process may have contributed to the ecological success of diatoms in the ocean.


Assuntos
Organismos Aquáticos/metabolismo , Dióxido de Carbono/metabolismo , Diatomáceas/citologia , Diatomáceas/metabolismo , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo , Força Próton-Motriz , Trifosfato de Adenosina/metabolismo , Organismos Aquáticos/citologia , Organismos Aquáticos/enzimologia , Organismos Aquáticos/genética , Ciclo do Carbono , Diatomáceas/enzimologia , Diatomáceas/genética , Ecossistema , Proteínas Mitocondriais/deficiência , Proteínas Mitocondriais/metabolismo , NADP/metabolismo , Oceanos e Mares , Oxirredução , Oxirredutases/deficiência , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(43): E4560-7, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313036

RESUMO

In animal and plant cells, the ATP/ADP ratio and/or energy charge are generally considered key parameters regulating metabolism and respiration. The major alternative issue of whether the cytosolic and mitochondrial concentrations of ADP and ATP directly mediate cell respiration remains unclear, however. In addition, because only free nucleotides are exchanged by the mitochondrial ADP/ATP carrier, whereas MgADP is the substrate of ATP synthase (EC 3.6.3.14), the cytosolic and mitochondrial Mg(2+) concentrations must be considered as well. Here we developed in vivo/in vitro techniques using (31)P-NMR spectroscopy to simultaneously measure these key components in subcellular compartments. We show that heterotrophic sycamore (Acer pseudoplatanus L.) cells incubated in various nutrient media contain low, stable cytosolic ADP and Mg(2+) concentrations, unlike ATP. ADP is mainly free in the cytosol, but complexed by Mg(2+) in the mitochondrial matrix, where [Mg(2+)] is tenfold higher. In contrast, owing to a much higher affinity for Mg(2+), ATP is mostly complexed by Mg(2+) in both compartments. Mg(2+) starvation used to alter cytosolic and mitochondrial [Mg(2+)] reversibly increases free nucleotide concentration in the cytosol and matrix, enhances ADP at the expense of ATP, decreases coupled respiration, and stops cell growth. We conclude that the cytosolic ADP concentration, and not ATP, ATP/ADP ratio, or energy charge, controls the respiration of plant cells. The Mg(2+) concentration, remarkably constant and low in the cytosol and tenfold higher in the matrix, mediates ADP/ATP exchange between the cytosol and matrix, [MgADP]-dependent mitochondrial ATP synthase activity, and cytosolic free ADP homeostasis.


Assuntos
Acer/citologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Citosol/metabolismo , Magnésio/metabolismo , Mitocôndrias/metabolismo , Compartimento Celular , Extratos Celulares , Respiração Celular , Homeostase , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Células Vegetais/metabolismo
8.
Funct Plant Biol ; 41(3): 330, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32480993

RESUMO

Many horticultural and natural plant species have variegated leaves, that is, patchy leaves with green and non-green or white areas. Specific studies on the metabolism of variegated leaves are scarce and although white (non-green) areas have been assumed to play the role of a 'nitrogen store', there is no specific studies showing the analysis of nitrogenous metabolites and the dynamics of nitrogen assimilation. Here, we examined the metabolism of variegated leaves of Pelargonium × hortorum. We show that white areas have a larger N : C ratio, more amino acids, with a clear accumulation of arginine. Metabolomic analyses revealed clear differences in the chemical composition, suggesting contrasted metabolic commitments such as an enhancement of alkaloid biosynthesis in white areas. Using isotopic labelling followed by nuclear magnetic resonance or liquid chromatography/mass spectrometry, we further showed that in addition to glutamine, tyrosine and tryptophan, N metabolism forms ornithine in green area and huge amounts of arginine in white areas. Fine isotopic measurements with isotope ratio mass spectrometry indicated that white and green areas exchange nitrogenous molecules but nitrogen export from green areas is quantitatively much more important. The biological significance of the metabolic exchange between leaf areas is briefly discussed.

9.
FEMS Microbiol Lett ; 343(1): 49-56, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23480054

RESUMO

Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.


Assuntos
Bradyrhizobium/química , Bradyrhizobium/metabolismo , Glycine max/microbiologia , Metaboloma , Nódulos Radiculares de Plantas/microbiologia , Carboidratos/análise , Espectroscopia de Ressonância Magnética , Nucleotídeos/análise , Fosfatos/análise
10.
Biochemistry ; 52(5): 869-77, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23301499

RESUMO

d-Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the most abundant enzyme on Earth and is responsible for the fixation of atmospheric CO(2) into biomass. The reaction consists of incorporation of CO(2) and solvent H(2)O into d-ribulose 1,5-bisphosphate (RuBP) to yield 3-phospho-d-glycerate. The reaction involves several proton-dependent events: abstraction and protonation during enolization of RuBP and hydrolysis and reprotonation of the six-carbon reaction intermediate (carboxyketone). Although much is known about Rubisco structure and diversity, fundamental aspects of the reaction mechanism are poorly documented. How and when are protons exchanged among substrate, amino acid residues, and solvent water, and could alterations of proton exchange influence catalytic turnover? What is the energy profile of the reaction? To answer these questions, we measured catalytic rates and the (12)CO(2)/(13)CO(2) isotope effect in isotopic waters. We show that with increasing D(2)O content, the maximal carboxylation velocity (k(cat)(c)) decreased linearly and was 1.7 times lower in pure D(2)O. By contrast, the isotope effect on the apparent Michaelis constant for CO(2) (K(c)) was unity, suggesting that H/D exchange might have occurred with the solvent in early steps thereby slowing the overall catalysis. Calculations of kinetic commitments from observed isotope effects further indicate that (1) enolization and processing of the carboxyketone are similarly rate-limiting and (2) the tendency of the carboxyketone to go backward (decarboxylation) is likely exacerbated upon deuteration. Our results thus suggest that Rubisco catalysis is achieved by a rather equal distribution of energy barriers along the reaction.


Assuntos
Óxido de Deutério/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Spinacia oleracea/enzimologia , Dióxido de Carbono/metabolismo , Cinética , Folhas de Planta/metabolismo , Ribulosefosfatos/metabolismo , Spinacia oleracea/metabolismo , Termodinâmica
11.
Plant Cell Environ ; 35(12): 2208-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22646810

RESUMO

Although there is now a considerable literature on the inhibition of leaf respiration (CO(2) evolution) by light, little is known about the effect of other environmental conditions on day respiratory metabolism. In particular, CO(2) and O(2) mole fractions are assumed to cause changes in the tricarboxylic acid pathway (TCAP) but the amplitude and even the direction of such changes are still a matter of debate. Here, we took advantage of isotopic techniques, new simple equations and instant freeze sampling to follow respiratory metabolism in illuminated cocklebur leaves (Xanthium strumarium L.) under different CO(2) /O(2) conditions. Gas exchange coupled to online isotopic analysis showed that CO(2) evolved by leaves in the light came from 'old' carbon skeletons and there was a slight decrease in (13) C natural abundance when [CO(2) ] increased. This suggested the involvement of enzymatic steps fractionating more strongly against (13) C and thus increasingly limiting for the metabolic respiratory flux as [CO(2) ] increased. Isotopic labelling with (13) C(2) -2,4-citrate lead to (13) C-enriched Glu and 2-oxoglutarate (2OG), clearly demonstrating poor metabolism of citrate by the TCAP. There was a clear relationship between the ribulose-1,5-bisphosphate oxygenation-to-carboxylation ratio (v(o) /v(c) ) and the (13) C commitment to 2OG, demonstrating that 2OG and Glu synthesis via the TCAP is positively influenced by photorespiration.


Assuntos
Dióxido de Carbono/metabolismo , Ácido Cítrico/metabolismo , Oxigênio/metabolismo , Folhas de Planta/metabolismo , Cromatografia Líquida , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Fotossíntese
12.
Plant Methods ; 8: 4, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22289515

RESUMO

BACKGROUND: The repeated weekly subculture of plant cell suspension is labour intensive and increases the risk of variation from parental cells lines. Most of the procedures to preserve cultures are based on controlled freezing/thawing and storage in liquid nitrogen. However, cells viability after unfreezing is uncertain. The long-term storage and regeneration of plant cell cultures remains a priority. RESULTS: Sycamore (Acer pseudoplatanus) and Arabidopsis cell were preserved over six months as suspensions cultures in a phosphate-free nutrient medium at 5°C. The cell recovery monitored via gas exchange measurements and metabolic profiling using in vitro and in vivo 13C- and 31P-NMR took a couple of hours, and cell growth restarted without appreciable delay. No measurable cell death was observed. CONCLUSION: We provide a simple method to preserve physiologically homogenous plant cell cultures without subculture over several months. The protocol based on the blockage of cell growth and low culture temperature is robust for heterotrophic and semi-autotrophic cells and should be adjustable to cell lines other than those utilised in this study. It requires no specialized equipment and is suitable for routine laboratory use.

13.
Funct Plant Biol ; 39(12): 959-967, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32480845

RESUMO

Many horticultural and natural plant species have variegated leaves, that is, patchy leaves with green and non-green or white areas. Specific studies on the metabolism of variegated leaves are scarce and although white (non-green) areas have been assumed to play the role of a 'nitrogen store', there is no specific studies showing the analysis of nitrogenous metabolites and the dynamics of nitrogen assimilation. Here, we examined the metabolism of variegated leaves of Pelargonium×hortorum. We show that white areas have a larger N:C ratio, more amino acids, with a clear accumulation of arginine. Metabolomic analyses revealed clear differences in the chemical composition, suggesting contrasted metabolic commitments such as an enhancement of alkaloid biosynthesis in white areas. Using isotopic labelling followed by nuclear magnetic resonance or liquid chromatography/mass spectrometry, we further showed that in addition to glutamine, tyrosine and tryptophan, N metabolism forms ornithine in green area and huge amounts of arginine in white areas. Fine isotopic measurements with isotope ratio mass spectrometry indicated that white and green areas exchange nitrogenous molecules but nitrogen export from green areas is quantitatively much more important. The biological significance of the metabolic exchange between leaf areas is briefly discussed.

14.
Mol Microbiol ; 82(4): 988-97, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22032684

RESUMO

Plant pathogenic bacteria of the genera Dickeya and Pectobacterium are broad-host-range necrotrophs which cause soft-rot diseases in important crops. A metabolomic analysis, based on (13)C-NMR spectroscopy, was used to characterize the plant-bacteria interaction. Metabolic profiles revealed a decline in plant sugars and amino acids during infection and the concomitant appearance of a compound identified as 2,3-butanediol. Butanediol is the major metabolite found in macerated tissues of various host plants. It is accumulated during the symptomatic phase of the disease. Different species of Dickeya or Pectobacterium secrete high levels of butanediol during plant infection. Butanediol has been described as a signalling molecule involved in plant/bacterium interactions and, notably, able to induce plant systemic resistance. The bud genes, involved in butanediol production, are conserved in the phytopathogenic enterobacteria of the genera Dickeya, Pectobacterium, Erwinia, Pantoea and Brenneria. Inactivation of the bud genes of Dickeya dadantii revealed that the virulence of budA, budB and budR mutants was clearly reduced. The genes budA, budB and budC are highly expressed during plant infection. These data highlight the importance of butanediol metabolism in limiting acidification of the plant tissue during the development of the soft-rot disease caused by pectinolytic enterobacteria.


Assuntos
Butileno Glicóis/metabolismo , Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Doenças das Plantas/microbiologia , Plantas/microbiologia , Aminoácidos/análise , Carboidratos/análise , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Espectroscopia de Ressonância Magnética , Metaboloma , Plantas/química , Virulência , Fatores de Virulência/genética
15.
Physiol Plant ; 143(3): 246-60, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21848651

RESUMO

The significance of total glutathione content was investigated in two alpine plant species with highly differing antioxidative scavenging capacity. Leaves of Soldanella alpina and Ranunculus glacialis incubated for 48 h in the presence of buthionine-sulfoximine had 50% lower glutathione contents when compared with leaves incubated in water. The low leaf glutathione content was not compensated for by activation of other components involved in antioxidative protection or electron consumption. However, leaves with normal but not with low glutathione content increased their ascorbate content during high light (HL) treatment (S. alpina) or catalase activity at low temperature (LT) (R. glacialis), suggesting that the mere decline of the leaf glutathione content does not act as a signal to ameliorate antioxidative protection by alternative mechanisms. CO(2)-saturated oxygen evolution was not affected in glutathione-depleted leaves at various temperatures, except at 35°C, thereby increasing the high temperature (HT) sensitivity of both alpine species. Leaves with low and normal glutathione content were similarly resistant to photoinhibition and photodamage during HL treatment at ambient temperature in the presence and absence of paraquat or at LT. However, HL- and HT-induced photoinhibition increased in leaves with low compared to leaves with normal glutathione content, mainly because the recovery after heat inactivation was retarded in glutathione-depleted leaves. Differences in the response of photosystem II (PSII) activity and CO(2)-saturated photosynthesis suggest that PSII is not the primary target during HL inactivation at HT. The results are discussed with respect to the role of antioxidative protection as a safety valve for temperature extremes to which plants are not acclimated.


Assuntos
Glutationa/metabolismo , Primulaceae/fisiologia , Ranunculus/fisiologia , Aclimatação , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Temperatura Baixa , Glutationa/biossíntese , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/química , Primulaceae/metabolismo , Ranunculus/metabolismo
16.
Plant Physiol ; 157(1): 86-95, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730197

RESUMO

Day respiration is the cornerstone of nitrogen assimilation since it provides carbon skeletons to primary metabolism for glutamate (Glu) and glutamine synthesis. However, recent studies have suggested that the tricarboxylic acid pathway is rate limiting and mitochondrial pyruvate dehydrogenation is partly inhibited in the light. Pyruvate may serve as a carbon source for amino acid (e.g. alanine) or fatty acid synthesis, but pyruvate metabolism is not well documented, and neither is the possible resynthesis of phosphoenolpyruvate (PEP). Here, we examined the capacity of pyruvate to convert back to PEP using (13)C and (2)H labeling in illuminated cocklebur (Xanthium strumarium) leaves. We show that the intramolecular labeling pattern in Glu, 2-oxoglutarate, and malate after (13)C-3-pyruvate feeding was consistent with (13)C redistribution from PEP via the PEP-carboxylase reaction. Furthermore, the deuterium loss in Glu after (2)H(3)-(13)C-3-pyruvate feeding suggests that conversion to PEP and back to pyruvate washed out (2)H atoms to the solvent. Our results demonstrate that in cocklebur leaves, PEP resynthesis occurred as a flux from pyruvate, approximately 0.5‰ of the net CO(2) assimilation rate. This is likely to involve pyruvate inorganic phosphate dikinase and the fundamental importance of this flux for PEP and inorganic phosphate homeostasis is discussed.


Assuntos
Fosfoenolpiruvato/metabolismo , Folhas de Planta/metabolismo , Ácido Pirúvico/metabolismo , Isótopos de Carbono/metabolismo
17.
Mol Plant Microbe Interact ; 24(9): 1061-73, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21649510

RESUMO

The oomycete Plasmopara viticola is responsible for downy mildew, a severe grapevine disease. In infected grapevine leaves, we have observed an abnormal starch accumulation at the end of the dark period, suggesting modifications in starch metabolism. Therefore, several complementary approaches, including transcriptomic analyses, measurements of enzyme activities, and sugar quantification, were performed in order to investigate and to understand the effects of P. viticola infection on leaf starch and-to a larger extent-carbohydrate metabolism. Our results indicate that starch accumulation is associated with an increase in ADP-glucose pyrophosphorylase (AGPase) activity and modifications in the starch degradation pathway, especially an increased α-amylase activity. Together with these alterations in starch metabolism, we have observed an accumulation of hexoses, an increase in invertase activity, and a reduction of photosynthesis, indicating a source-to-sink transition in infected leaf tissue. Additionally, we have measured an accumulation of the disaccharide trehalose correlated to an increased trehalase gene expression and enzyme activity. Altogether, these results highlight a dramatic alteration of carbohydrate metabolism correlated with later stages of P. viticola development in leaves.


Assuntos
Enzimas/metabolismo , Oomicetos/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Amido/metabolismo , Vitis/fisiologia , Metabolismo dos Carboidratos , Clorofila/metabolismo , Enzimas/genética , Regulação da Expressão Gênica de Plantas , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Hexoses/análise , Hexoses/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oomicetos/patogenicidade , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Polissacarídeos/análise , Polissacarídeos/metabolismo , RNA de Plantas/genética , Amido/análise , Trealose/metabolismo , Vitis/enzimologia , Vitis/genética , Vitis/microbiologia , alfa-Amilases/genética , alfa-Amilases/metabolismo , beta-Amilase/genética , beta-Amilase/metabolismo
18.
Plant Cell Environ ; 34(8): 1241-7, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21443577

RESUMO

The methylerythritol 4-phosphate (MEP) and the mevalonate pathways are the unique synthesis routes for the precursors of all isoprenoids. An original mean to measure the carbon flux through the MEP pathway in plants is proposed by using cadmium as a total short-term inhibitor of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MEcDP) reductase (GcpE) and measuring the accumulation rate of its substrate MEcDP by (31) P-NMR spectroscopy. The MEP pathway metabolic flux was determined in spinach (Spinacia oleracea), pea (Pisum sativum), Oregon grape (Mahonia aquifolium) and boxwood (Buxus sempervirens) leaves. In spinach, flux values were compared with the synthesis rate of major isoprenoids. The flux increases with light intensity (fourfold in the 200-1200 µmol m(-2) s(-1) PPFR range) and temperature (sevenfold in the 25-37 °C range). The relationship with the light and the temperature dependency of isoprenoid production downstream of the MEP pathway is discussed.


Assuntos
Ciclo do Carbono , Eritritol/análogos & derivados , Plantas/metabolismo , Terpenos/metabolismo , Buxus/metabolismo , Cádmio/farmacologia , Inibidores Enzimáticos/farmacologia , Eritritol/análise , Eritritol/metabolismo , Luz , Espectroscopia de Ressonância Magnética , Mahonia/metabolismo , Redes e Vias Metabólicas , Ácido Mevalônico/metabolismo , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Pisum sativum/metabolismo , Radioisótopos de Fósforo , Spinacia oleracea/metabolismo , Temperatura
19.
Plant J ; 66(4): 689-99, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21309867

RESUMO

Inorganic phosphate (Pi) homeostasis in multi-cellular eukaryotes depends not only on Pi influx into cells, but also on Pi efflux. Examples in plants for which Pi efflux is crucial are transfer of Pi into the xylem of roots and release of Pi at the peri-arbuscular interface of mycorrhizal roots. Despite its importance, no protein has been identified that specifically mediates phosphate efflux either in animals or plants. The Arabidopsis thaliana PHO1 gene is expressed in roots, and was previously shown to be involved in long-distance transfer of Pi from the root to the shoot. Here we show that PHO1 over-expression in the shoot of A. thaliana led to a two- to threefold increase in shoot Pi content and a severe reduction in shoot growth. (31) P-NMR in vivo showed a normal initial distribution of intracellular Pi between the cytoplasm and the vacuole in leaves over-expressing PHO1, followed by a large efflux of Pi into the infiltration medium, leading to a rapid reduction of the vacuolar Pi pool. Furthermore, the Pi concentration in leaf xylem exudates from intact plants was more than 100-fold higher in PHO1 over-expressing plants compared to wild-type. Together, these results show that PHO1 over-expression in leaves leads to a dramatic efflux of Pi out of cells and into the xylem vessel, revealing a crucial role for PHO1 in Pi efflux.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfatos/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/citologia , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Protoplastos/metabolismo , Vacúolos/metabolismo , Xilema/metabolismo
20.
Plant J ; 65(4): 557-70, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21288266

RESUMO

Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Fosfatos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , RNA de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...